Upper Bound of Bayesian Generalization Error in Stochastic Matrix Factorization
نویسندگان
چکیده
Stochastic matrix factorization (SMF) has proposed and it can be understood as a restriction to non-negative matrix factorization (NMF). SMF is useful for inference of topic models, NMF for binary matrices data, and Bayesian Network. However, it needs some strong assumption to reach unique factorization in SMF and also theoretical prediction accuracy has not yet clarified. In this paper, we study the maximum pole of zeta function (real log canonical threshold) of general SMF and derive an upper bound of the generalization error in Bayesian inference. This results give the foundation of establishing widely applicable and rigorous factorization method for SMF and mean that the generalization error in SMF can become smaller than regular statistical models by Bayesian inference.
منابع مشابه
Upper bound of Bayesian generalization error in non-negative matrix factorization
Non-negative matrix factorization ( NMF ) is a new knowledge discovery method that is used for text mining, signal processing, bioinformatics, and consumer analysis. However, its basic property as a learning machine is not yet clarified, as it is not a regular statistical model, resulting that theoretical optimization method of NMF has not yet established. In this paper, we study the real log c...
متن کاملA New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions
In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملGeneralization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints
Algorithm-dependent generalization error bounds are central to statistical learning theory. A learning algorithm may use a large hypothesis space, but the limited number of iterations controls its model capacity and generalization error. The impacts of stochastic gradient methods on generalization error for non-convex learning problems not only have important theoretical consequences, but are a...
متن کاملDimensionality-Dependent Generalization Bounds for k-Dimensional Coding Schemes
The k-dimensional coding schemes refer to a collection of methods that attempt to represent data using a set of representative k-dimensional vectors and include nonnegative matrix factorization, dictionary learning, sparse coding, k-means clustering, and vector quantization as special cases. Previous generalization bounds for the reconstruction error of the k-dimensional coding schemes are main...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.04212 شماره
صفحات -
تاریخ انتشار 2017